Evaluating the Impact of Safe Routes to School Infrastructure on Active Travel in Central Texas Schools: Findings from the STREETS Study

Deborah Salvo, PhD, & Yuzi Zhang, PhD, Deanna Hoeslcher, PhD

Texas Trails and Active Transportation September 4, 2024

Today's presentation

- 1. Overview of the STREETS Study
- 2. Novel method for integrating accelerometry, GPS, and GIS data
- 3. Preliminary results:
 - Spatial equity analysis
 - Serial cross-sectional study using a teacher tally to measure modes of Active Commuting to School

Importance of active travel for children

Martin et al (2016); Cooper et al (2003); Cooper et al (2012); Campos-Garzón et al (2023)

Active school travel may contribute up to **48%** of the physical activity recommendations in young people on school days.

Public Health Benefits of Active Travel to School

- Physical activity
- Cardiorespiratory fitness (cycling)
- ↑ Cardiometabolic health
- 1 Muscular fitness
- ↑ Mental health
- Traffic-related injuries and fatalities

Martin et al (2016); Cooper et al (2003); Cooper et al (2012); Campos-Garzón et al (2023)

Societal Benefits of Active Travel to School

- Use of private automobiles and other motorized transport, including busing to school
 - Congestion
 - Noise in neighborhoods
 - ↑ Social cohesion

Martin et al (2016); Cooper et al (2003); Cooper et al (2012); Campos-Garzón et al (2023)

Environmental Benefits of ACS

- Small form factor
- Clean transportation
- Fewer wastes and resources

Status of ACS in US

Travel Mode to/from School in Elementary Schools in the US

Correlates of ACS

Figure from Larouche & Ghekiere (2018)

STREETS Study Overview

STREETS Study Aims

To evaluate the effects of \$27.5 million USD allocated to Safe Routes to School infrastructure in Austin, Texas, USA.

Aim 1

Determine effects of SRTS infrastructure changes on child physical activity.

Aim 2

Determine effects of SRTS infrastructure changes on active commuting to school.

Aim 3

Examine the **cost effectiveness** of SRTS infrastructure changes on child physical activity levels.

Overview of quasi-experimental study design

Serial cross-sectional study

Sample

70 Austin schools with SRTS improvements 30 comparison schools

Measurements

- ✓ Active commuting to school tally
- ✓ School policy survey
- ✓ School demographics
- ✓ GIS measures of built environment

TexCEP Centering Equity

Cohort study

Sample

Subset of 30 Austin schools (3 schools per city council district)
Subset of 15 comparison schools

Measurements

- ✓ Accelerometer and GPS
- ✓ Child survey
- ✓ Parent survey
- ✓ MAPS-SRTS environmental audit

Overview of quasi-experimental study design

Serial cross-sectional study

- ✓ Active commuting to school tally
- ✓ School policy survey
- ✓ School demographics

The University of Texas at Austin

College of Education

✓ GIS measures of built environment

Cohort study

Sample

Subset of 30 Austin schools (3 schools per city council district) Subset of 15 comparison schools

Measurements

- ✓ Accelerometer and GPS
- ✓ Child survey
- ✓ Parent survey
- ✓ MAPS-SRTS environmental audit

Development of an open access tool for time-matching accelerometer and GPS data to assess the spatiotemporal patterns of active travel among children

Salvo D, Villa U, Ganzar LA, Hoelscher D. A novel tool to match GPS, accelerometer and GIS data for child active travel research

- The use of time-matched Geographic Positioning Systems (GPS) and accelerometry data holds great promise for better understanding the microlevel environmental factors (street-level features) that influence active travel behaviors.
- However, processing and analyzing these data in ways that yield meaningful insights to answer health and place questions and inform built environment policy remains challenging.
- We are developing an **open-source**, **Python based code** that time-matches QTravel BT-10000 GPS and GT3X-wBT Actigraph monitor data

Understanding the spatio-temporal patterns and micro-scale drivers of physical activity behaviors among children

Activity
spaces
(GIS
Integration)

Kohl, Murray & Salvo, 2025 (forthcoming)

Figure 4.3. Conceptual representation of a child's "activity space" data measured with GPS monitors. A person's activity space includes the usual spatial patterns of their everyday life, and therefore, where physical activity can take place. Round/oval clusters represent commonly visited locations, while routes between locations represent trips by various travel modes (active modes include walking and cycling, sedentary modes include car trips).

Preliminary Results: Spatial Equity Analysis of Access to Activity-Promoting Assets in School Neighborhoods

Recreational Assets for Physical Activity

Research questions

Availability

Income level Racial/ethnic diversity

Recreational Assets for Physical Activity

83 public elementary schools

55% high racial/ethnic diversity

35% low park availability

19% no recreational centers

36% no sports/fitness instruction

- ✓ Higher-income (vs. low) neighborhoods were less likely of having medium-high park availability and any sports/fitness instruction
- ✓ High-diversity (vs. low-some) neighborhoods were less likely of having any recreational center and any sports/fitness instruction

Preliminary Results: Effect of Safe Routes to School Infrastructure changes on Active Travel to School Participation

Preliminary Results: *Active Travel to School* rates before construction

wave	
1	Spring 2019
2	Fall 2019
3	Spring 2020
4	Fall 2020
5	Spring 2021
6	Fall 2021
7	Spring 2022
8	Fall 2022
9	Spring 2023
10	Fall 2023
11	Spring 2024

Before construction, Austin schools had a **5.7% decrease** in Active Travel to School in Fall **2019**, compared to schools before construction in the Spring 2019.

Preliminary Results: *Active Travel to School* rates during construction

During construction, Austin schools' active travel to school participation was lower, as compared to before construction in the Spring 2019.

Preliminary Results: *Active Travel to School* rates shortly after construction is completed

Data analysis for other study components remains underway and will be completed in the next few months...

STAY TUNED FOR MORE!

Acknowledgements

Other team members

- Dr. Deanna Hoelscher (PI)
- Dr. Adriana Pérez
- Dr. Leigh Ann Ganzar
- Dr. Kevin Lanza
- Dr. Shelton Brown
- Sarah Bentley, MPH

- Thank you to the City of Austin SRTS department and study participants.
- This research was funded by the Eunice Kennedy Shriver National Institute of Child Health & Human Development, grant number R01 HD097669, and support was provided by the Michael and Susan Dell Foundation through the Michael & Susan Dell Center for Healthy Living.

Thank you!

Deborah Salvo, PhD

Associate Professor, Department of Kinesiology and Health Education

Director, Texas Center for Equity Promotion (TexCEP)

University of Texas at Austin

Yuzi Zhang, PhD

Post-doctoral fellow

UTHealth Houston, School of Public Health in Austin

Michael & Susan Dell Center for Healthy Living

